
Overhauling Rdist for the ’90s
Michael A. Cooper – University of Southern California

ABSTRACT
The rdist program was first released as part of 4.3BSD UNIX. It was one of the first programs
to address the area of automated software distribution in a timely, consistent manner in a
highly distributed environment. Since its first release it has gained very wide use on almost
every major UNIX platform. Despite all of its initial advances, rdist has some deficiencies
which have not been addressed in any public release of the software until now.

This paper describes the past, present, and future of rdist. The program’s history, operation,
comparisons to other similar packages, and a number of possible future improvements in
performance and functionality are described. A detailed description of rdist version 6, a
major new version of the software that will be included in 4.4BSD, is presented. Version 6
rdist addresses many of the deficiencies of the original rdist, including significantly improved
performance when updating large numbers of hosts, better error handling and avoidance,
improved security, and cleanup of the actual source code.

Introduction

This paper describes major work done to a new
version of rdist (version 6.0) that will appear in
4.4BSD. A look at the performance improvements
in version 6, as well as possible future improve-
ments, is discussed. The basic history and operation
of rdist is described along with comparisons to other
remote distribution packages.

The USC Environment

In order to provide better insight into the
motivations behind the work described in this paper,
it is helpful to describe the computing environment
at the University of Southern California (USC)
where most of the work was performed.

USC is a private University composed of two
major campuses – University Park Campus (UPC)
and Health Sciences Campus (HSC) – which are
located some six miles apart.

The computing environment consists of about
3,000 hosts. This breaks down to about 1,000 UNIX
machines (about 800 are Suns with the balance
including NeXT, IBM RS6000, HP, and Silicon
Graphics), 1,000 MS-DOS machines, 850 MacIntosh
machines, and about 200 ‘‘other’’ types of machines.
There are approximately 3,500 total ‘‘nodes’’ on
USCnet, the campus LAN. USCnet physically con-
sists of 12 cisco routers, 3 NSC routers, 1 Optical
Data Systems (ODS) FDDI concentrator and myriads
of various Ethernet and Fiber bridges and repeaters.
Most of the routers are connected to an FDDI back-
bone. Twelve Sun SPARCsystems and one IBM
RS6000 are connected to the ODS FDDI concentra-
tor.

University Computing Services (UCS) is a ser-
vice organization at USC which is charged with pro-
viding computing resources and support to the USC

community. UCS centrally manages both centralized
and distributed computing facilities. Approximately
800 UNIX hosts at USC are supported by UCS.
Additionally, USCnet is also ‘‘owned’’, operated,
and maintained by UCS. While UCS supports
machines that are physically located in a centralized
machine room, most computing resources are widely
dispersed across the UPC and HSC campuses.

The current UCS support model for UNIX hosts
is that all distributed and centralized resources are
managed directly by a small group of people operat-
ing from a centralized physical location. Almost all
major system administration work is done by UCS
instead of by local system administrators. Each
departmental machine under support has a designated
Technical Contact. This person is usually a graduate
student or professor who is responsible for perform-
ing ‘‘day-to-day’’ local system administration, such
as resetting printer queues, setting up user accounts,
and maintaining user disk quotas. UCS is usually
the only party that has ‘‘root’’ (super-user) on
machines connected to USCnet. The Technical Con-
tact is provided with a special account which has
access to a set-uid to ‘‘root’’ program which can run
certain other programs as any valid user or group.

When problems or requests arise that are out-
side of the ‘‘day-to-day’’ privileges allowed the
Technical Contact, they contact UCS via an elec-
tronic mail address called action or by calling the
UCS Customer Service number.

History

History of rdist
Rdist was originally written in 1983-1984 by

Ralph Campbell, then a graduate student at the
University of California Berkeley. The only major
release of the software was the version included in
the 4.3BSD UNIX release in 1986. Since then,

1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA 1

Overhauling Rdist for the ’90s Cooper

several major and minor security problems were
fixed by the CSRG group at Berkeley. Various sites
and individuals in the research community have also
modified rdist to increase functionality and perfor-
mance. Those modifications, plus a number of bugs
and suggestions submitted to CSRG, have been
evaluated and addressed in rdist 6.0.
History of rdist at USC

The first experiences with UNIX at USC where
with a couple of DEC VAX-11/750’s running
4.2BSD UNIX back in 1984-1985. It was apparent
from the start that some type of software was needed
to maintain distributed computing resources. How-
ever, nothing was available at that time that really
addressed the issues involved with maintaining
thousands and thousands of files on a large number
of machines (two dozen UNIX hosts was considered a
‘‘large number’’ back then). When we purchased
our first workstations (Sun-3/50’s) in early 1986,
there was still nothing to maintain all the distributed
files. We were still muddling along with simple
shell scripts for our thirty UNIX hosts. By the time
rdist was released with 4.3BSD, and shortly after-
wards with SunOS, we were really starting to strug-
gle to maintain our 100 UNIX hosts.

The release and subsequent Great Discovery of
rdist in 1986-1987 came as the number of UNIX
workstations started doubling every year. Over the
year or so following the Great Discovery, the
number of supported machines continued to dramati-
cally increase. Rdist all too quickly started showing
signs of significant deficiencies in performance. The
goals of the part time work that started in 1988, were
to improve efficiency, reliability, and performance, in
order to support the ever growing number and
variety of UNIX machines. Looking back at all the
work done, it would have been far better in the long
run to have completely re-written rdist from scratch.1

The first major change made was to add sup-
port for updating multiple hosts in parallel. Despite
a large number of other changes since then, this one
item still remains as the single largest performance
increase realized to date.
Release History

The first version of rdist to be released was the
version included in 4.3BSD. This version spoke ver-
sion 3 of the rdist protocol.

The first version of rdist to be released exter-
nally from USC was version 5.0 (protocol version 5)
in 1991. This version never got farther then beta
testing at a small number of external sites. During
the beta test, a copy of all the submissions regarding
rdist bugs, suggestions, and improvements sent to
the CSRG group at UC Berkeley, was received.
This resulted in a significant number of changes that

1Hind sight is always 20/20.

obsoleted version 5.0 and spawned version 6.0 (pro-
tocol version 6), which is the first version of rdist
from USC to make it into general distribution.

Description of Rdist

What It Does
Rdist is a program that maintains identical

copies of files over multiple hosts. It preserves the
owner, group, mode, and modification time (mtime)
of files, if possible, and can update programs that are
executing. Rdist reads commands from a distfile to
direct the updating of files and/or directories similar
to how make reads recipes from a Makefile. The
syntax of distfile is described in the rdist (1) man
page in Appendix A.
What It’s Good For

Rdist is a general purpose program which can
be utilized for a number of purposes. It provides an
excellent mechanism for maintaining consistent ver-
sions of files that contain text, binary, or other type
of data. This is invaluable for maintaining the same
version of operating system files on a multitude of
hosts.

A number of sites use rdist in place of Sun’s
Network Information Service (NIS, aka YP) to main-
tain consistent, distributed copies of /etc/hosts,
/etc/passwd, /etc/group, /etc/services, and others
([Satd91a]).

At USC, rdist is normally used to maintain
consistent versions of operating system files as well
as third party software packages such as X11, GNU
Emacs, and many others. It is often used to perform
minor operating system upgrades such as upgrading
hosts from SunOS 4.1.1 to SunOS 4.1.2.
How It Works

Rdist parses a file called distfile which contains
a description of what needs to be done. Once this
file is parsed, rdist will open connections to multiple
clients in parallel using the rcmd (3) interface2. If a
connection attempt fails, or a running session fails,
no further connection attempts are made during that
instance of rdist in order to avoid slowing down
updates to other hosts.

The rcmd() routine makes a connection to the
rshd (8c) program on the remote host. The rshd pro-
gram in turns checks to see if the user is authorized
via the ‘‘.rhosts’’ mechanism. If the authorization
succeeds, then the user’s login shell is started, using
the command:

rdistd –S3

The user’s login shell searches for the program
2The rcmd (3) interface is the same one used by the

rsh (1c) command.
3The – S option is required to avoid accidental execution

by actual users since rdistd usually resides in the normal
user’s search path.

2 1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA

Cooper Overhauling Rdist for the ’90s

rdistd in the user’s search path ($PATH) and exe-
cutes it if found. Rdistd now sends a message back
to rdist, through the rsh connection, requesting rdist
to send its protocol version number. Rdistd reads
the version number and decides whether it supports
that protocol version. If it cannot support it, it will
return an appropriate error message to rdist and exit.
Otherwise rdistd starts accepting commands from
rdist.

After negotiating the protocol version with
rdistd, rdist now sends global configuration informa-
tion to rdistd. This information includes the name of
the host rdist is running on4 as well as any global
parameters such as minimum amount of free space
and files that must exist before a file will be
installed. Once this configuration information is suc-
cessfully sent, rdist starts checking files as specified
in the distfile. The actual protocol involved in this,
is beyond the scope of this paper.
Methodology of Operation

The methodology behind the operation of rdist
is one of a dictator forcing his/her view upon his/her
subjects regardless of the subject’s will. This works
well in environments where there is centralized
management which has almost absolute control over
the distributed environment. A centralized machine
(or machines) can utilize rdist to maintain a large
number of distributed machines.

Another major benefit to this model is in secu-
rity. Maintaining a tight security leash on a few cen-
tralized machines which rdist to some number of
other machines can be an excellent mechanism for
automatic detection and correction of security intru-
sions. The corruption of system programs is a typi-
cal method used by many intruders to gain further
access and privileges. This type of attack is easily
detected and corrected with the proper application of
rdist. Obviously, the master rdist host(s) must be
carefully guarded against being compromised, or else
all your client machines may become compromised.

Comparisons

Comparison to Track
The track system as described in [Nach86a] is

another automatic software distribution package simi-
lar in capabilities to rdist. It differs significantly in
it’s basic architecture and the methodology behind it.

4Rdistd does not know the name of the host rdist is
running on because rshd does not provide any mechanism
for obtaining this information. Thus, the host name is for
informational use only and should never be used for any
kind of authentication.

Architecture Differences
The main architectural difference between rdist

and track is in the track model of pulling files from
a centralized Librarian host down to Subscriber
hosts. The Subscriber host has a subscription file
which contains lists of software packages and the
Library host that they reside on. The Subscriber
host is responsible for initiating contact with the
appropriate Library host(s) in order to update and/or
verify packages.

This model works well in environments where
distributed hosts are administered by mostly auto-
nomous local system administrators. In environ-
ments where centralized control and security are of
primary importance, the rdist model of pushing files
out to client machines is more in line with those
priorities.

With rdist, the master distribution host is the
only point where configuration information must be
maintained. The track model is that each Subscriber
must maintain the list of packages it wants to
receive. The Librarian maintains the details of each
package, which includes the package contents and
the Subscribers authorized to receive the package. A
misconfigured Subscriber host may go undetected for
a long period of time. Automating the distribution
of the subscription information from a central
Library host may solve some of the problems. How-
ever, this would remove the local autonomy aspect
of track and still not provide for the automatic detec-
tion and correction of security intrusions that is
inherent in the architecture of rdist.
Transport

Track also differs from rdist in the transport
layer used to communicate between client and server.
Rdist uses rsh (via the rcmd() library routine) as its
transport layer. Rsh in turn is implemented on top
of TCP/IP. Rdist does NO authentication itself,
instead relying on rsh to perform the authentication.
Track, on the other hand, is implemented directly on
top of the TCP/IP layer. The client and server com-
munication through a ‘‘well-known’’, privileged TCP
port. The server is responsible for doing all authen-
tication.

One of the benefits of using rsh as the transport
layer, is in portability to other platforms and network
protocols. Since most every 4.X BSD UNIX based
platform supports rsh there is no transport layer in
rdist to port. If rsh is ported to utilize another net-
work protocol, rdist can also automatically make use
of it.

On the down side, using rsh as a transport layer
severely limits the authentication performed for an
application. Currently rsh relies on the often
insecure method of IP host address and privileged
ports as a means of authentication. This does not
provide for a secure means of rdistd obtaining the

1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA 3

Overhauling Rdist for the ’90s Cooper

actual identity of the user or host running rdist on
the remote host.

The implication here is that rdist cannot pro-
vide a subscription service as track does. The rea-
son for this lies in rsh which hides the actual identity
of the caller. This means Rdistd doesn’t know the
authenticated identity of the caller, which is a
requirement of most subscription oriented services in
order to restrict access of certain files and commands
to certain callers. Track can authenticate the caller’s
identity since it listens on its own TCP port and
therefore ‘‘knows’’ the identity of its caller in the
same manner that rsh does.

The eventual solution to the caller identification
problem in rdist is probably Kerberos. Currently
rdist does not use Kerberos since there are still a
few vulnerabilities in the Kerberos protocol and
because its use is not yet wide spread. It should be
a trivial matter to add Kerberos support to rdist at a
later time.

Changing rdist to eliminate the rsh layer and
use its own well-known TCP port was considered at
one point. The only major benefit gained would be
the ability to implement a subscription service. The
amount of work and additional complexity required
for this was deemed excessive in the face of the
eventual use of Kerberos. Those sites requiring the
pull file model can use track. Those sites requiring
the push file model can use rdist as currently imple-
mented.
Feature Differences

There are some basic feature differences
between rdist and track. One of the most notable is
track’s use of a state database on the Librarian host,
which is implemented as a ‘‘flat’’ ASCII text file.
The database contains state information for files in
the Library. This information is basically the file
type, the path name of the file, and the currentness
of the file. The currentness is defined based on the
type of file. The currentness of regular files is the
file’s modification time. For directories its based on
the owner and group of the directory. For symbolic
links it is the pathname the link points to.

The state database is periodically generated by
running a command either via an automatic
scheduler such as cron, or manually from a users
shell. The track state database generator provides
for only coarse updates by checking all the files
listed in the Library subscription list. This model
works sufficiently if updates of files that are in the
Library are infrequent. In a volatile environment
such as USC, which has frequent (daily) updates to
many different ‘‘sections’’ of a Library, a coarse
grain state database generator involves significant
overhead which greatly increases the time to update
files. Experiments with using the same type of state
database generator with rdist showed an overall
increase in the time it took to verify a large number

of volatile files.

The rdist master host at USC which updates the
most files is a Sun SPARCsystem 490 with 128MB
main memory and 15GB of IPI-2 disk. Using a
coarse grain generator similar to track’s, it took
approximately 8.3 hours to generate a database for
some 512,000 files. Once generated, an rdist session
reading from this database instead of doing a stat()
call for every file for every client, took 3.3 hours to
do an rdist verify of all files on 103 hosts, with 4
clients being checked simultaneously. The same
setup without using the state database took 4.5 hours.
The total aggregate time with the state database is
11.6 hours compared to 4.5 hours without. Notice
that the without number is not significantly higher
than the verify time of the with number. This is
most likely due to the kernel caching the inode infor-
mation which is advantageous to the simultaneous
updates of clients since they are usually checking the
same files at roughly the same time. A possible
solution to this problem is to implement a fine grain
state database generator which is discussed later in
the paper in the Future Directions section.
Other Differences

Other features that are present in rdist but miss-
ing in track include track’s inability to detect when
the owner, group, file mode, and/or contents of a
regular file has changed, but the modification time
(mtime) has not. Only the mtime is checked to deter-
mine if the file is current or not.

Track also lacks a regular expression facility
for the exception field in the subscription file. This
could be corrected by using one of the many regular
expression libraries available, such as the Berkeley
regex (re_comp()/re_exec()) routines which are used
by rdist.
Comparison to Ninstall

Ninstall as described in [Rodr87a] is similar in
architecture to track. It provides the same model for
pulling files from other hosts and installing them on
the machine it was run on. It differs from rdist
along the same lines as track.
Comparison to Ru

Ru as described in [Sigm87a] is also similar in
concept to track. It differs in architecture with rdist
in a manner similar to track. The fact that it’s
implemented as a small set of shell scripts shows
that an automated software distribution system need
not be complex to provide minimal functionality.

Deficiencies of Original Rdist

The original rdist had a number of deficiencies
that are described below. It should be noted that for
all it’s flaws, it made for a very useful and pioneer-
ing tool which helped pave the way for rdist version
6 and several others.

4 1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA

Cooper Overhauling Rdist for the ’90s

Serial Host Updates
The original rdist would only update one single

host at a time. Updating a large number of hosts
was extremely slow and inefficient because of this.
One very slow host, or a connection that hangs,
would also delay updates for all other hosts, possibly
indefinitely.

In 1983, when rdist was originally written,
CPU speed and I/O bandwidth was still relatively
slow and kernel inode caching techniques were
somewhat primitive. This made applications such as
rdist extremely disk bound in performance. The
benefits of parallel rdist updates were negligible
when faced with these limits. Since the original ver-
sion was written, significant increases in CPU speed
and I/O bandwidth, as well as advances in kernel
inode caching techniques, have made parallelizing
once disk-bound applications, such as rdist, very
appealing.
Hangs

The original rdist never attempted to avoid
hanging. A remote host could get into a state where
it never completed an rdist session, thus hanging all
other host updates.
Security Problems

The original rdist had one program, rdist,
which was set-uid to ‘‘root’’. This meant that both
the client and server rdist processes had to run as
‘‘root’’ which led to a number of security holes.
Bad Coding Style

The coding style used in the original rdist left
even some of the best C programmers mystified as to
many of the its inner workings. One of the most
notable problems was in the use of hardwired proto-
col values. Instead of using #define definitions for
the rdist protocol commands, the actual values were
coded in multiple places (usually at least twice –
once in the client modules and once in the server
modules) throughout the source code. This made
following, let alone extending, the protocol logic a
feat not for the meek.

The repetition of redundant code often served
to cause confusion when changes were made to one
part of the code, but not another. The nonuse of
‘‘standard’’ C library routines also led the code
being to illegible, redundant, and non-portable.

The combination of the client and server pro-
grams into one program made the logic flow clut-
tered and unnecessarily complex in many areas.
This often resulted in vulnerabilities in security.

The rampant use of gotos and use of large rou-
tines with many levels instead of smaller, simpler
functions, also made logic flow unnecessarily
difficult to follow.

Miscellaneous
The mode and ownership of files was never

checked for currentness in the original rdist. Only
when a file’s mtime was found to be out of date and
a file was updated, was the file’s mode and owner-
ship set.

The original rdist could not handle rdisting a
directory on the local machine to a symlink on a
remote machine. e.g. Suppose you have a directory
/foo/bar on machine A and machine B. If you
replace /foo/bar on machine B with a symlink and
then rdist from machine A to machine B, rdist
would fail (with an error) to update /foo/bar on
machine B.

New Features of Rdist

Many new features have been added to rdist 6.0
since the release of the original in 4.3BSD. Some of
the highlights are detailed below.
Parallel Host Updates

Multiple target hosts are now updated in paral-
lel. This can dramatically improve the update time
for a large number of hosts. The effective number
of concurrent updates is limited by the CPU and I/O
bandwidth of the host running rdist. The value of 4
concurrent updates has proven an adequate default
value for many different platforms. See the Perfor-
mance section for a discussion of this.
Improved Error Handling and Avoidance
Timeouts

There are a number of ways that rdist can hang
if not properly avoided. One such case is when a
host goes down and does not reboot. If this occurs
while rdist is doing a read() waiting for response
from the unreachable host, the TCP/IP kernel layer
does not pass up a failure error unless the remote
host comes back up on the network. A similar situa-
tion can occur if the remote host is a NIS client and
loses contact with an NIS server.

Rdist avoids hanging by setting timeout alarms
via alarm() and signal(). Before calling read() to
read a response from the remote host, an alarm() is
set for a given period of time (10 minutes by
default). If no response has been received at the end
of the timeout period, the session is marked as failed
and the child rdist process for that particular host
exits with an error status. The parent rdist process
then proceeds to the next host to update.
Avoid Retries

If a connection to a host fails at any point for
any reason, no further attempts are made to contact
the host during that instance of rdist. This avoids
having a host that is unreachable, or not responding
properly, from slowing down, or even preventing,
the updates of other hosts.

1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA 5

Overhauling Rdist for the ’90s Cooper

Error Messages
Local and remote error messages are distinctly

marked as such for better clarity as to the origin of
the error. This makes determining the cause of the
error much simpler.
Free Space Checking

The amount of free space and/or free
files/inodes can optionally be checked to avoid filling
up a filesystem. Before actually installing or updat-
ing a file, Rdist will calculate whether the update
would exceed the minimum amount of free space
and/or inodes as specified on the command line. If
the minimum space would be exceeded by the
update, no update is performed and an error message
is displayed. This allows rdist to be less intrusive
by preventing it from filling up a filesystem.

The cost for this avoidance is increased over-
head resulting from additional system calls. The
statfs() system call is called for most every update of
a file. The calculation and call are performed after
the currentness check but before the actual
install/update is performed.
Split Client and Server

The client and server portions have been split
into two distinct programs, rdist and rdistd, respec-
tively. This lowers the risk of security vulnerabili-
ties since the server rdistd, does not need to be set-
uid to ‘‘root’’. It also allows for greater ease in
maintaining different protocol versions of rdist.
Major Code Cleanup

Most sections of the source code have been
cleaned up, and in many cases, re-written. A major-
ity of this cleanup was to make the code more
understandable and to clarify the underlying rdist
protocol itself. Many routines were converted to use
standard system library routines. The code has been
ported to a number of different UNIX platforms,
including several System V.3 based systems, with
relatively little changes.
Miscellaneous

All reported security holes have been fixed.

Modes of files and directories are now checked.
If they are different, the entire file on the remote
machine is updated. This is done instead of just
changing the mode and/or ownership in case the file
was compromised in some manner. This is usually
quicker than doing a full binary comparison of the
local and remote files.

Rdist now has the ability to rdist a directory to
a symbolic link. The original rdist could not handle
this.

Rdist will optionally check whether a file
resides on a NFS and/or a read-only filesystem. If
so, no update will be done unless explicitly specified
for that host.

A general protocol command was added during
the initial connection negotiation to support setting
certain parameters. These parameters include the
name of the host running rdist, the minimum amount
of free space, and the minimum number of free
files/inodes that must be available on a filesystem for
a file to be updated. The host name is used for
internal logging purposes by rdistd and is also used
in setting the process arguments to show where the
host is being rdist’ed from.

Support was added to do buffered reads.
Instead of reading one character at a time from the
remote host like the original rdist did, it now
attempts to fill a full 8 kilobyte buffer whenever pos-
sible. This can lead to measurable reductions in sys-
tem overhead due to the reduced number of kernel
read() calls needed.

All configuration information is now stored in
two places, config.h and Makefile. Porting to a new
platform usually only requires slight modifications to
these files.

Performance

Parallel Updates
The most significant performance improvement

seen in version 6 of rdist is in parallel updates. This
can be evaluated by running a series of tests varying
the number of simultaneous updates. Table 1 shows
the results of two such tests. The Number column
indicates the number of simultaneous clients being
updated, Time indicates elapsed ‘‘wall-clock’’ time
in minutes, and %CPU indicates the percent of the
CPU used._ __

Table 1_ ___ __
Test 1 Test 2Number Time %CPU Time %CPU_ __

1 756 10 1600 18
2 309 24 1012 30
3 254 31 713 48
4 175 48 873 36
5 217 40 413 73
6 195 46 431 71
7 198 42 446 69
8 207 40 432 73
9 208 40 510 63

10 200 42 568 58_ __ 







































































The test used in both cases was to run rdist in
verify mode, varying the number of simultaneous
clients being updated between 1 and 10. Each test
used a different rdist master and a different set and
number of files. All machines involved with the test,
including the master rdist hosts, where running their
normal work load. This accounts for some
discrepancies in the results.

6 1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA

Cooper Overhauling Rdist for the ’90s

Results of Test 1
The distfile used in Test 1 is used at USC to

maintain a body of some 10GB of software. The
test was run on a Sun SPARCsystem 490 with
128MB of RAM and 15GB of IPI-2 disk. A total of
29 hosts were listed in the distfile as client hosts.

The results for this test indicate that the
optimum number of simultaneous updates is 4. The
elapsed time drops off most significantly between 1
and 2 clients, in comparison to any of the other
numbers. This is likely due to the kernel caching
the inode information that occurs when rdist calls
stat() which is where rdist incurs most of its over-
head. Since the two rdist processes are stat()’ing the
same set of files at roughly the same time, the kernel
only has to read the inode information once from
disk in most cases.

The amount of CPU used in Test 1 levels off
around 42% starting around 4 parallel updates. This
may also be an indication that the kernel is able to
use cached inode information most of the time. This
ability is probably due to the large amount of RAM
(128MB) in the master machine used for this test,
which allows more information to be kept in the ker-
nel inode cache.
Results of Test 2

Test 2 uses a distfile that is used at USC to
maintain the SunOS 4.1.2 operating system files
which include /sbin, /usr/5bin, /usr/5include,
/usr/5lib, /usr/bin, /usr/etc, /usr/kvm, /usr/share, and
/usr/ucb. The rdist master host used was a Sun
SPARCstation ELC with 8MB of RAM and 300MB
of SCSI disk. A total of 245 hosts were listed in the
distfile as client hosts.

The results of this test show that 5 simultane-
ous updates is the most optimal value for elapsed
time. However, the percent of CPU required for 5
updates is 73% as opposed to just 36% for 4 parallel
updates. This indicates the presence of a threshold
in the system of some type. Most likely the thres-
hold is the system running out of physical memory
which results in increased paging rates and keeping
less inode information cached in the kernel.

Future Work

There are a number of possible avenues for
future work to follow which may lead to increased
performance and functionality.
State Database

The implementation of a state database, and a
corresponding fine grain state database generator, is a
likely source for further performance improvements.
The cost of updating the state database must be
lower in overhead than simply checking the state of
each file during the actual update session as is done
in the current implementation. Such a generator
must have the ability to check and update specific

files, directories, or packages of software. In this
way, a system administrator who updates a file or
entire package of software, could manually run the
generator specifying the newly updated files or pack-
ages to check. Additionally, the most frequently
changing packages could be automatically checked
hourly or daily with a full check of everything on a
weekly basis.

Another area of interest for the state database
problem is the underlying database itself. Flat files
are very inefficient to update and search if they con-
tain large numbers (large being greater than 100,000)
of entries (files) and are very hard to update quickly
in a fine grain manner.

The dbm (3) routines also do not scale well to
large numbers of entries. The new Berkeley hash
database package [Selt91a] may be one possible solu-
tion. There are certainly a number of commercial
databases that could handle the data, but the financial
cost is, of course, prohibitive.
Message Handling

Message handling is one area which requires
some attention. The quantity of output from rdist
can be quite voluminous as well as useless in con-
tent. The amount of output that can result in just
one new software package, such as MIT’s X11R5,
can be hundreds of thousands of lines. Human
perusal of so much output is tedious, boring, and is
usually ignored.

The destination of the messages could also be
improved. Currently, all errors that occur are
displayed in the normal output along with the normal
messages. Major errors that rdistd encounters, are
logged via the syslog facility.

The current rdist includes a filter written in
Perl to put the output in a more human readable for-
mat. It does nothing to reduce the amount of data
nor provide any filtering of the type of messages
seen.

To address this problem, a comprehensive
overhaul of the message handling system in rdist is
needed. All messages need to be classified by type
and assigned a severity level which should look
something like those of syslog. The message han-
dling system will also need to be changed to support
a variety of logging destinations such as files, syslog,
electronic mail, and perhaps a general purpose facil-
ity to allow piping to an arbitrary user specified
command. A better filter program on top of all this
could also increase the readability and amount of
data shown.
File Checking

Another area for possible performance improve-
ment is in checking actual file contents. The current
rdist offers the option of doing a byte-by-byte com-
parison of files. This is implemented by having rdist
send a full copy of a file over to rdistd and then

1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA 7

Overhauling Rdist for the ’90s Cooper

doing a byte-by-byte comparison. In the case of
large files and relatively slow or congested network
links, this can be prohibitive. Implementing a check-
sum test would address this issue. A checksum
would be performed for the files on the client and
server by both rdist and rdistd and the results com-
pared. The file would then only need to be
transferred if it’s out of date and rdist is in update
mode.
Polling the Rdist Server

An interesting feature that was added to the ori-
ginal 4.3BSD rdist by the Ballistic Research Labora-
tories (BRL) was the ability of a client rdist host to
poll an rdist master host. This allows the client to
be rdisted to on-demand as opposed to when the
master wants to.

The way it works is the client runs rdist with
the poll option specifying the name of the master
rdist host to contact. The client rdist then uses the
same rcmd() interface as the master does to open a
rsh connection to the master. The command run via
rcmd() tells the rdist server to go into polling mode
and also specifies the name of the client doing the
poll. The master host then reverses the connection,
parses the distfile in the current directory (which
should be the home directory of the user the server
is running as), and proceeds with a normal rdist ses-
sion for just the polling host.

The polling feature is not present in version 6.0
of rdist. The changes from BRL are not easily
incorporated into version 6.0 due to the separation of
the client and server processes into separate pro-
grams. It’s also not clear if this is really that desir-
able. In order for it to work, the server program,
rdistd, probably needs to be set-uid to ‘‘root’’,
which removes one of the more desirable features of
version 6 rdist.

Conclusions

The system described above has gone through a
number of internal releases since work began 4 years
ago. It currently is used to support some 800 UNIX
machines at USC. While many new features have
been added since the original 4.3BSD version, no
further significant performance gains have been real-
ized since the initial support for parallel updates was
added. Adding support for a state database and fine
grain database generator hold hope for another leap
in performance which we hope will be able to sus-
tain the current growth rate of UNIX machines here at
USC and elsewhere.

Availability

Rdist is available via anonymous ftp from host
usc.edu as /pub/rdist/rdist.tar.Z.

References

Satd91a. Bjorn Satdeva and Paul M. Moriarty,
‘‘Fdist: A Domain Based File Distribution Sys-
tem for Heterogeneous Environment,’’ in LISA
V Conference Proceedings, pp. 109-126,
USENIX, San Diego, CA, September 30 -
October 3, 1991.

Nach86a. Daniel Nachbar, ‘‘When Network File Sys-
tems Aren’t Enough: Automatic Software Dis-
tribution Revisited,’’ in USENIX Conference
Proceedings, pp. 159-171, USENIX, Atlanta,
GA, Summer 1986.

Rodr87a. Mike Rodriquez, ‘‘Software Distribution in
a Network Environment,’’ in Large Installation
System Administrators Workshop Proceedings,
p. 20, USENIX, Philadelphia, PA, April 9-10,
1987.

Sigm87a. Tim Sigmon, ‘‘Automatic Software Distri-
bution,’’ in Large Installation System Adminis-
trators Workshop Proceedings, p. 21, USENIX,
Philadelphia, PA, April 9-10, 1987.

Selt91a. Margo Seltzer and Ozan Yigit, ‘‘A New
Hashing Package for UNIX,’’ in USENIX
Conference Proceedings, pp. 173-184,
USENIX, Dallas, TX, January 21-25, 1991.

Author Information

Michael Cooper has been working on UNIX sys-
tems for 10 years. He has worked in the Research,
Development, and Systems Group of University
Computing Services at the University of Southern
California since 1985. Reach him via U.S. Mail at:
University Computing Services University of South-
ern California Los Angeles, California, 90089-0251.
Reach him electronically at mcooper@usc.edu .

8 1992 LISA VI – October 19-June 23, 1992 – Long Beach, CA

